
COMB: A Portable Benchmark Suite for Assessing MPI Overlap

William Lawry, Christopher Wilson, Arthur B. Maccabe �

University of New Mexico, Computer Science Department
Farris Engineering Center, Rm 157, Albuquerque NM 87131

fbill,riley,maccabeg@cs.unm.edu

Ron Brightwell †

Sandia National Laboratories
Scalable Computing Systems Department, 9223

P. O. Box 5800, Albuquerque, NM 87185-1110 bright@cs.sandia.gov

Abstract

This paper describes a portable benchmark suite that as-
sesses the ability of cluster networking hardware and soft-
ware to overlap MPI communication and computation. The
Communication Offload MPI-based Benchmark, or COMB,
uses two methods to characterize the ability of messages
to make progress concurrently with computational process-
ing on the host processor(s). COMB measures the relation-
ship between MPI communication bandwidth and host CPU
availability.

1. Introduction

Advances in networking technology for cluster comput-
ing have led to significant improvements in achievable la-
tency and bandwidth performance. Many of these improve-
ments are based on an implementation strategy called Op-
erating System Bypass, or OS-bypass, which attempts to
increase network performance and reduce host CPU over-
head by offloading communication operations to intelligent
network interfaces. These interfaces, such as Myrinet [3],
are capable of “user-level” networking, that is, moving data
directly from an application’s address space without any in-
volvement of the operating system in the data transfer.

Overhead has been shown to be the most significant fac-
tor in effecting application performance [4]. Unfortunately,
the reduction in host CPU overhead has not always been ac-

�This work was supported in part through the Computer Science Re-
search Institute (CSRI) at Sandia National Laboratories under contract
number SF-6432-CR.

†Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy
under contract DE-AC04-94AL85000.

companied by the performance benefits afforded by overlap
of communication and computation. Indeed, White and Bo-
val [1] concluded that the MPI implementations commonly
targeted for large-scale parallel computation do not show
significant performance improvement when MPI programs
are designed for overlap, based on experimental models.

While most MPI microbenchmarks can measure latency,
bandwidth, and host CPU overhead, they fail to accurately
characterize the actual performance that applications can
expect. Communication microbenchmarks typically focus
on message passing performance relative to achieving peak
performance of the network and do not characterize the per-
formance impact of message passing relative to both the
peak performance of the network and the peak availabil-
ity of the host CPU to the application. For a given message
size, the COMB benchmark indicates the maximum possi-
ble sustained bandwidth as well as the CPU availability to
the application at this level of maximum communication.

The benchmark provides an additional check of whether
the MPI library complies with the Progress Rule of the MPI
Standard: that non-local message passing operations will
complete independently of a process making library calls.
This check is based on one of several MPI-call durations
provided by COMB.

2. COMB communication models

COMB uses two communication models. Using com-
munication between a pair of nodes, the two models jointly
target two key aspects of cluster communication, overlap
and overhead. While two-node communication provides a
useful but limited view to the purchaser or user of a com-
munication system, it can give the developer meaningful in-
formation into the problems and bottlenecks in the current
state of the implementation of interest. A developer can use

Proceedings of the IEEE International Conference on Cluster Computing (CLUSTER’02)
0-7695-1745-5/02 $17.00 © 2002 IEEE

accurate and detailed metrics for realizing specific perfor-
mance enhancements which contribute to the ultimate goal
of comprehensive performance.

COMB avoids the non-portable and/or less than accurate
methods of measuring overhead such as a counter in the idle
loop of the kernel or in a separate user-level thread, or such
as the use of system contextual information. Kernel coun-
ters are very accurate but not portable. Separate user-level
threads include overhead due to context switching. System-
based contextual information, like pstat, is system depen-
dent and can have a granularity dependent on the the OS
scheduler.

COMB avoids these issues by using one process on each
of two nodes. One process, the support process, simply
supports communication while the other process, the tim-
ing process, communicates as well as monitors its rate of
progress in for-loop iterations. This two-node communica-
tion is employed in two distinct methods: Polling and Post-
Work-Wait as illustrated in Figure 1. Both methods actu-
ally run in two phases. During the first phase, the dry work
phase, the method records the amount of time to accomplish
a predetermined amount of work in the absence of commu-
nication. The second wet work phase records the time for
the same amount of work while the two processes are ex-
changing messages. The CPU availability is reported as:

availability=
time(work without messaging)

time(work plus MPI calls while messaging)

T

T

work
interval

T time stamp

T time stamp

T

T

Work

Timing Node

Timing Node

Po
st

−
W

or
k−

W
ai

t
Po

lli
ng

T

T

Support Node

Support Node

Messaging

Messaging

Pre−Post

Pre−Post

Wait

Wait

W
or

k

Progress
Messaging

interval
poll

Figure 1. COMB methods: Polling & Post-
Work-Wait

The Polling method periodically polls with MPI Test for
message arrival. After some number of iterations, the timing
process polls for message arrival; this number of iterations
defines the polling interval. If a test for message completion

is negative, the timing process will iterate through another
polling interval before testing again. If a test for completion
is positive, the process will post related messaging calls and
will similarly address any other received messages before
entering another polling interval. The support process sends
messages as fast as they are consumed. The Polling method
terminates when a pre-determined number of accumulated
iterations completes.

The essentially artificial communication model of the
Polling method is aimed at gaging the maximum possible
availability of the CPU as experienced by a user-level appli-
cation under a continuous communication environment. In
contrast, the Post-Work-Wait method models the exchange
of two messages between nodes where only the essential
non-blocking calls are made before some computational
work (i.e., for-loop iterations) which is finally followed by a
wait for message completion. The number of “work” itera-
tions may be varied for a view into how the communication-
specific time is spent during the non-blocking post, work, or
wait periods. Again, the method is illustrated in Figure 1.

3. Platform description

The results presented here are based on the same node
and network hardware using a variety of communication
software. Each node contained a 500 MHz Intel Pentium III
processor with 256MB of main memory and a Myrinet [3]
LANai 7.2 network interface card (NIC). Nodes were con-
nected using a Myrinet 8-port SAN/LAN switch. As dis-
cussed in detail below, we use two types of communication
systems: MPICH/GM and MPI/Portals. These systems rep-
resent different communication paradigms and herein serve
to illustrate the system characterization afforded by COMB
rather than serving as points supporting a position on which
paradigm is better.

MPICH/GM GM [2] is the supported message passing
software from Myricom for Myrinet. It consists of a user-
level library, a Linux driver and Myrinet Control Program
(MCP) which runs on the NIC. Myricom also supplies a port
of the MPICH [8] implementation of the MPI Standard. Our
results were gathered using GM version 1.4, MPICH/GM
version 1.2..4, and a Linux 2.2.14 kernel. This setup makes
use of the intelligent NIC such that payload transfer to and
from user-space occurs with little host involvement.

MPI/Portals Results were also gathered using the Por-
tals 3.0 [7, 6] software designed and developed by Sandia
and the University of New Mexico. Portals is an interface
for data movement designed to support massively parallel
commodity clusters, such as the Computational Plant [5].
We have also ported the MPICH implementation of MPI to
Portals 3.0.

2

Proceedings of the IEEE International Conference on Cluster Computing (CLUSTER’02)
0-7695-1745-5/02 $17.00 © 2002 IEEE

The particular implementation of Portals for Myrinet
used in our experiments is kernel-based. The user-level Por-
tals library interfaces to a Linux kernel module that pro-
cesses Portals messages. This kernel module in turn inter-
faces to another kernel module that provides reliability and
flow control for Myrinet packets. This kernel module works
with a Sandia-developed MCP that simply acts as a packet
engine. This particular implementation of Portals does not
employ OS-bypass techniques.

4. Results and analysis

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100 120 140 160 180 200

B
an

dw
id

th
 (

M
B

/s
)

Message Size (KB)

data file: msg-sz1-gm.dat

"data/msg-sz1-gm.dat" using 4:3

Figure 2. Polling: bandwidth per message
size (MPICH/GM)

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160 180 200

A
va

ila
bi

lit
y

(f
ra

c
to

 a
pp

)

Message Size (KB)

data file: msg-sz1-gm.dat

"data/msg-sz1-gm.dat" using 4:2

Figure 3. Polling: availability per message
size (MPICH/GM)

Figures 2 and 3 show bandwidth and availability results,
or equivalently overhead results, for using MPICH/GM us-

ing a short poll interval which ensures a maximum possi-
ble messaging rate. The pair of data points for a particular
message size in these two graphs result from the same tim-
ing run; the experienced availability, or equivalently over-
head, is concurrently measured with network bandwidth.
For these two graphs, the polling interval is sufficiently
small in each run such that the bandwidth graph represents
the maximum sustainable bandwidth for that message size.
Note that the graphs bring out system characteristics with
respect to MPICH/GM’s protocol change at 16 KB, to an-
other system pattern that repeats every 16 KB between mes-
sage sizes between 16 KB and 128 KB, as well as to a sec-
ond MPICH/GM protocol change at 128 KB. The run-time
for gathering this data is approximately five minutes on our
hardware platform.

4.1. Communication and computation overlap

When taken together, Figures 2 and 3 clearly illustrate
the potential in MPICH/GM to overlap communication and
computation. This represents MPICH/GM’s actual overlap
under Polling’s artificially frequent calls to MPI Test and
the representation is made in terms of actual CPU availabil-
ity while communication is in progress. Alternatively and
as previously discussed, the Post-Work-Wait method model
is closer to a realistic communication pattern between two
nodes; during the exchange of two messages, the timing
process performs work after the set of non-blocking calls
and before the wait for message completion. A similar ex-
perimental technique has been used elsewhere [1].

Since Post-Work-Wait times the durations of the three pe-
riods, consider the duration of the wait period as a function
of increasing work interval. If a communication system can
overlap communication and computation with only the ini-
tiating posts then the wait duration should decrease with a
longer and longer work interval. Figure 4 shows this func-
tion for the MPICH/GM and MPI/Portals systems. Clearly,
without additional calls to the MPI library, MPICH/GM
does not have overlap whereas MPI/Portals does.

Again, note that this is not an overall system charac-
terization but a specific qualification of the ability of a
system to overlap communication. In other comparisons,
MPICH/GM has comparatively good performance in terms
of raw bandwidth and general lack of communication over-
head and subsection 4.2 illustrates the communication over-
head associated with MPI/Portals.

4.2. Communication overhead

Figure 5 shows the Post-Work-Wait timing signature for
MPI/Portals with 100 KB messages. The “y” axis is used
to indicate the durations for the three periods of the method
and the “x” axis indicates the increasing interval between

3

Proceedings of the IEEE International Conference on Cluster Computing (CLUSTER’02)
0-7695-1745-5/02 $17.00 © 2002 IEEE

 0

 500

 1000

 1500

 2000

 2500

104 105 106

T
im

e
P

er
 M

es
sa

ge
 (

us
)

Poll Interval (loop iterations)

GM
Portals

Figure 4. PWW: durations for MPI’s wait

the non-blocking posts and the wait for message comple-
tion. As previously discussed, the wait durations decline
with increasing work interval showing that MPI/Portals is
able to overlap communication and computation.

What is also shown is the effect of overhead on delay-
ing computation. Such overhead is indicated by the differ-
ence between the work without message handling (“work”)
and work with message handling (“work (MH)”). Also, the
overhead associated with the non-blocking posts is evident
as the difference between a) the work with message han-
dling and b) the sum of the non-blocking posts and work
with message handling (“post work”). This detailed repre-
sentation of the effects of communication are an aid to the
developer in gaging efforts at performance improvement for
specific periods within a communication cycle.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 20000 40000 60000 80000 100000 120000

D
ur

at
io

n
(u

s)

Work Interval (loop iterations)

data file: pww100KB80.dat

post work
work (MH)

work
wait

Figure 5. PWW: timing signature (MPI/Portals
- 100 KB messages)

5. Summary

In this paper, we have described the COMB benchmark
suite that characterizes a systems communication overhead
as well as the ability of a system to overlap computation and
communication. We have described the methods and ap-
proach of COMB and demonstrated its utility in providing
insight into the underlying implementation of communica-
tion system. In particular, we have demonstrated the bench-
mark suite’s ability to distinguish between systems that sup-
port the MPI Progress Rule and those that do not. COMB is
available at http://www.cs.unm.edu/˜maccabe.

References

[1] James B. White and Steve W. Bova. Where’s the overlap?
overlapping communication and computation in several pop-
ular mpi implementations. In Proceedings of the Third MPI
Developers’ and Users’ Conference, Mar. 1999.

[2] Myricom, Inc. The GM message passing system. Technical
report, 1997.

[3] Nanette J. Boden, Danny Cohen, Robert E. Felderman, Alan
E. Kulawik, Charles L. Seitz, Jakov N. Seizovic, and Wen-
King Su. Myrinet-a gigabit-per-second local-area network.
In IEEE Micro, volume 15(1), pages 29–36, Feb. 1995.

[4] Richard P. Martin, Amin M. Vahdat, David E. Cullet, and
Thomas E. Anderson. Effects of communication latency,
overhead, and bandwidth, in a cluster architecture. In
Proceedings of the 24th Annual International Symposium
on Computer Architecture(ISCA-97), Computer Architecture
News, volume 25,2.

[5] Ron B. Brightwell, Lee Ann Fisk, David S. Greenberg,
Tramm B. Hudson, Michael J. Levenhagen, Aruthur B. Mac-
cabe, and Rolf Riesen. Massively parallel computing using
commodity components. In Parallel Computing, volume 26,
pages 243–266, Feb. 2000.

[6] Ron Brightwell, Bill Lawry, Arthur B. Maccabe, and Rolf
Reissen. Portals 3.0: Protocol building blocks for low over-
head communication. In CAC Workshop, Apr. 2002.

[7] Ron Brightwell, Tramm Hudson, Rolf Riesen, and Arther B.
Maccabe. The Portals 3.0 message passing interface. Techni-
cal report SAND99-2959, Sandia National Laboratories, Dec.
1999.

[8] William Gropp, Ewing Lusk, Nathan Doss, and Anthony
Skjellum. A high-performance, portable implementation of
the MPI message passing interface standard. In Parallel Com-
puting, volume 22(6), pages 789–828, Sept. 1996.

4

Proceedings of the IEEE International Conference on Cluster Computing (CLUSTER’02)
0-7695-1745-5/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

